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Overview

Segmentation as pixel labeling
Probabilistic approach

Markov Random Field (MRF)
Gibbs distribution & Energy function

Energy minimization
Simulated Annealing
Markov Chain Monte Carlo (MCMC) sampling

Example MRF model & Demo
Parameter estimation (EM)
More complex models
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1. Extract features from the input image
Each pixel s in the image has a feature vector     
For the whole image, we have

2. Define the set of labels Λ
Each pixel s is assigned a label 
For the whole image, we have

For an N×M image, there are |Λ|NM possible labelings.
Which one is the right segmentation?Which one is the right segmentation?

Segmentation as a Pixel Labelling Task
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Probabilistic Approach, MAP

Define a probability measure on the set of all 
possible labelings and select the most likely one.

measures the probability of a labelling, 
given the observed feature 
Our goal is to find an optimal labeling      which 
maximizes
This is called the Maximum a Posteriori (MAP) 
estimate:
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Bayesian Framework

By Bayes Theorem, we have

is constant 
We need to define         and               in our 
model
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Why MRF Modelization?

In real images, regions are often homogenous; 
neighboring pixels usually have similar 
properties  (intensity, color, texture, …)
Markov Random Field (MRF) is a probabilistic 
model which captures such contextual 
constraints
Well studied, strong theoretical background
Allows MCMC sampling of the (hidden) 
underlying structure Simulated Annealing
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What is MRF?

To give a formal definition for Markov Random 
Fields, we need some basic building blocks

Observation Field and (hidden) Labeling Field 
Pixels and their Neighbors
Cliques and Clique Potentials
Energy function
Gibbs Distribution



Zoltan Kato: Markov Random Fields in Image SegmentationZoltan Kato: Markov Random Fields in Image Segmentation 8

Definition – Neighbors

For each pixel, we can define some surrounding 
pixels as its neighbors.
Example : 1st order neighbors and 2nd order 
neighbors
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Definition – MRF

The labeling field X can be modeled as a 
Markov Random Field (MRF) if 

1. For all 
2. For every         and          :

denotes the neighbors of pixel s
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Hammersley-Clifford Theorem

The Hammersley-Clifford Theorem states that a random 
field is a MRF if and only if         follows a Gibbs 
distribution.

where                               is a normalization constant

This theorem provides us an 
easy way of defining MRF models via 
clique potentials.
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Definition – Clique 

A subset            is called a clique if every pair of 
pixels in this subset are neighbors.
A clique containing n pixels is called nth order
clique, denoted by .
The set of cliques in an image is denoted by 
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Definition – Clique Potential

For each clique c in the image, we can assign  a 
value         which is called clique potential of c, 
where      is the configuration of the labeling field
The sum of potentials of all cliques gives us the 
energy         of the configuration
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MRF segmentation model
+

find MAP estimate     

Segmentation of grayscale images:
A simple MRF model
Construct a segmentation model where regions are 
formed by spatial clusters of pixels with similar 
intensity:

Input image

segmentation

ω̂

Model 
parameters

ω̂
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MRF segmentation model
Pixel labels (or classes) are represented by 
Gaussian distributions:

Clique potentials:
Singleton: proportional to the likelihood of 
features given ω: log(P(f | ω)).
Doubleton: favours similar labels at neighbouring 
pixels – smoothness prior

As β increases, regions become more homogenous
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Model parameters

Doubleton potential β
less dependent on the input 

can be fixed a priori

Number of labels (|Λ|)
Problem dependent

usually given by the user or 
inferred from some higher level knowledge

Each label λ∈Λ is represented by a Gaussian 
distribution N(µλ,σλ):

estimated from the input image
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Model parameters

The class statistics (mean and variance) 
can be estimated via the empirical mean 
and variance:

where Sλ denotes the set of pixels in the 
training set of class λ
a training set consists in a representative 
region selected by the user
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Energy function

Now we can define the energy function of 
our MRF model:

Recall: 

Hence
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Optimization

Problem reduced to the 
minimization of a non-convex
energy function

Many local minima
Gradient descent?

Works only if we have a good
initial segmentation

Simulated Annealing
Always works (at least in theory)
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ICM (~Gradient descent) [Besag86]
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Simulated Annealing
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Temperature Schedule
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Temperature Schedule

Initial temperature: set it to a relatively low value (~4)
faster execution

must be high enough to allow random jumps at the beginning!

Schedule:
Stopping criteria:

Fixed number of iterations
Energy change is less than a threshols 
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Demo
Download from:
http://www.inf.u-szeged.hu/~kato/software/
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Summary

Design your model carefully
Optimization is just a tool, do not expect a 
good segmentation from a wrong model

What about other than graylevel features
Extension to color is relatively straightforward
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What color features?
RGB histogram

CIE-L*u*v* histogram
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Extract Color Feature

We adopt the CIE-L*u*v* color space because it 
is perceptually uniform.

Color difference can be measured by Euclidean 
distance of two color vectors.

We convert each pixel from RGB space to CIE-
L*u*v* space 

We have 3 color feature images

L* u* v*
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Color MRF segmentation model
Pixel labels (or classes) are represented by 
three-variate Gaussian distributions:

Clique potentials:
Singleton: proportional to the likelihood of 
features given ω: log(P(f | ω)).
Doubleton: favours similar labels at neighbouring 
pixels – smoothness prior

As β increases, regions become more homogenous
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Summary

Design your model carefully
Optimization is just a tool, do not expect a good 
segmentation from a wrong model

What about other than graylevel features
Extension to color is relatively straightforward

Can we segment images without user 
interaction?

Yes, but you need to estimate model 
parameters automatically (EM algorithm)
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Incomplete data problem

Supervised parameter estimation 
we are given a labelled data set to learn from

e.g. somebody manually assigned labels to pixels 

How to proceed without labelled data? 
Learning from incomplete data
Standard solution is an iterative procedure 
called Expectation-Maximization

Assigns labels and estimates parameters 
simultaneously
Chicken-Egg problem



30

EM principles : The two steps

Parameters :
P(pixel/label)P(label)

Weighted labeling :
P(label/pixel)

E Step : For each pixel, 
use parameters to compute probability distribution

M Step : Update the estimates of parameters
based on weighted (or ”soft”) labeling



The basic idea of EM

Each of the E and M steps is 
straightforward assuming the other is 
solved

Knowing the label of each pixel, we can 
estimate the parameters

Similar to supervised learning (hard vs. soft 
labeling)

Knowing the parameters of the distributions, 
we can assign a label to each pixel

by Maximum Likelihood – i.e. using the singleton 
energies only without pairwise interactions
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Parameter estimation via EM

Basically, we will fit a mixture of Gaussian 
to the image histogram

We know the number of labels |Λ| ≡ number of 
mixture components

At each pixel, the complete data includes
The observed feature fs

Hidden pixel labels ls (a vector of size |Λ|) 
specifies the contribution of the pixel feature to 
each of the labels – i.e. a soft labeling
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Parameter estimation via EM

E step: recompute lsi at each pixel s:

M step: update Gaussian parameters for 
each label λ:

Zoltan Kato: Markov Random Fields in Image SegmentationZoltan Kato: Markov Random Fields in Image Segmentation 33

∑
Λ∈

==

λ

λλ
λλλ

)()|(
)()|()|(

PP
PPP

s

s
s

i
s f

ffl

,...
)|(

)|(
,

||

)|(
)(

∑
∑∑

∈

∈∈ ==

Ss

SsSs

P

P

S

P
P

s

sss

f

fff

λ

λ
μ

λ
λ λ



Zoltan Kato: Markov Random Fields in Image SegmentationZoltan Kato: Markov Random Fields in Image Segmentation 34

Summary

Design your model carefully
Optimization is just a tool, do not expect a good 
segmentation from a wrong model

What about other than graylevel features
Extension to color is relatively

Can we segment images without user interaction?
Yes, but you need to estimate model parameters 
automatically (EM algorithm)

What if we do not know |Λ|? 
Fully automatic segmentation requires

Modeling of the parameters AND
a more sophisticated sampling algorithm (Reversible jump 
MCMC)
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MRF+RJMCMC vs. JSEG
R
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JSEG (Y. Deng, B.S.Manjunath: PAMI’01):
1. color quantization: colors are 

quantized to several representing 
classes that can be used to 
differentiate regions in the image. 

2. spatial segmentation: A region 
growing method is then used to 
segment the image.
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Benchmark results using the 
Berkeley Segmentation Dataset

RJMCMCJSEG
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Summary
Design your model carefully

Optimization is just a tool, do not expect a good segmentation from 
a wrong model

What about other than graylevel features
Extension to color is relatively

Can we segment images without user interaction?
Yes, but you need to estimate model parameters automatically (EM
algorithm)

What if we do not know |Λ|? 
Fully automatic segmentation requires

Modeling of the parameters AND
a more sophisticated sampling algorithm (Reversible jump MCMC) 

Can we segment more complex images?
Yes but you need a more complex MRF model



Objectives

Combine different segmentation cues:
Color & Texture [ICPR2002,ICIP2003]
Color & Motion [ACCV2006,ICIP2007]
…?

How humans do it?
Multiple cues are perceived simultaneously and 
then they are integrated by the human visual 
system [Kersten et al. An. Rev. Psych. 2004]
Therefore different image features has to be 
handled in a parallel fashion. 

We attempt to develop such a model in a 
Markovian framework
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Multi-Layer MRF Model: 
Neighborhood & Interactions

ω is modeled as a MRF
Layered structure
“Soft” interaction 
between features
P(ω | f) follows a 

Gibbs distribution
Clique potentials define 
the local interaction 
strength

MAP ⇔ Energy 
minimization (U(ω))
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Texture
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Texture Layer: MRF model

We extract two type of texture features
Gabor feature is good at discriminating strong-
ordered textures
MRSAR feature is good at discriminating weak-
ordered (or random) textures
The number of texture feature images depends on the 
size of the image and other parameters.

Most of these doesn’t contain useful information 
Select feature images with high discriminating power.

MRF model is similar to the color layer model.
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Examples of Texture Features

MRSAR features:

Gabor features:
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Combined Layer: Labels

A label on the combined 
layer consists of a pair of 
color and texture/motion 
labels such that                                                
where             and 
The number of possible 
classes is
The combined layer 
selects the most likely 
ones.  
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Combined Layer: Singleton potential

Controls the number of classes:

is the percentage of labels belonging to class
L is the number of classes present on the combined 
layer.

Unlikely classes have a few pixels they  will 
be penalized and removed to get a lower energy

is a log-Gaussian term:
Mean value is a guess about the number of  classes,
Variance is the confidence.
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Combined Layer: Doubleton potential

Preferences are set in this order:
1. Similar color and motion/texture labels 
2. Different color and motion/texture labels
3. Similar color (resp. motion/texture) and different 

motion/texture (resp. color) labels
These are contours visible only at one feature layer.
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Inter-layer clique potential

Five pair-wise interactions between 
a feature and combined layer
Potential is proportional to the 
difference of the singleton 
potentials at the corresponding 
feature layer.

Prefers ωs and ηs having the same 
label, since they represent the 
labeling of the same pixel 
Prefers ωs and ηr having the same 
label, since we expect the combined 
and feature layers to be homogenous
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Color Textured Segmentation

segmentation

segmentation

color

color

texture

texture
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Color Textured Segmentation
Original Image Texture 

Segmentation 
Color 

Segmentation 

   
Multi-cue Segmentation 

Texture Layer 
Result 

Color Layer 
Result 

Combined Layer 
Result 
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Color & Motion Segmentation
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