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Overview

m Segmentation as pixel labeling

m Probabilistic approach
0 Markov Random Field (MRF)
01 Gibbs distribution & Energy function

m Energy minimization
0 Simulated Annealing
0 Markov Chain Monte Carlo (MCMC) sampling

m Example MRF model & Demo
m Parameter estimation (EM)
m More complex models
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Segmentation as a Pixel Labelling Task

1.  Extract features from the input image
00 Each pixel s in the image has a feature vector
0 For the whole image, we have

f ={f :seS}

2. Define the set of labels A
O Each pixel s is assigned a label @), € A e
0 For the whole image, we have

o ={w,,s € S}

= For an NxM image, there are |A|NM possible labelings.
O Which one is the right segmentation?
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Probabilistic Approach, MAP

m Define a probablility measure on the set of all
possible labelings and select the most likely one.

m P(w]| f) measures the probability of a labelling,
given the observed feature f

m Our goal is to find an optimal labeling @ which
maximizes P(w| f)

m This is called the Maximum a Posteriori (MAP)
estimate:

o™ =argmaxP(w | f)

wel)
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Bayesian Framewor

likelihood

m By Bayes Theorem, we have

P(T)

Plw| f)=

m P(f)is constant

m We need to define P(w)and P(f |®) in our
model
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Why MRF Modelization?

m In real Images, regions are often homogenous;
neighboring pixels usually have similar
properties (intensity, color, texture, ...)

m Markov Random Field (MRF) is a probabilistic
model which captures such contextual
constraints

m Well studied, strong theoretical background

m Allows MCMC sampling of the (hidden)
underlying structure = Simulated Annealing
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What 1Is MRF?

m To give a formal definition for Markov Random
Fields, we need some basic building blocks
1 Observation Field and (hidden) Labeling Field
00 Pixels and their Neighbors
0 Cligues and Cligue Potentials
0 Energy function
[0 Gibbs Distribution
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Image Segmentation

Definition — Neighbors

m For each pixel, we can define some surrounding
pixels as its neighbors.

m Example : 15t order neighbors and 2hd order
neighbors

£ s
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Definition — MRF

m  The labeling field X can be modeled as a
Markov Random Field (MRF) if

1. Forall weQ:P(X=w)>0

2. ForeverySe€ Sandw€Q
Plo, |ow,,r#s)=P(o, |ow,,reN,)

N, denotes the neighbors of pixel s
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Hammersley-Clifford Theorem

m The Hammersley-Clifford Theorem states that a random
field is a MRF if and only if P(@) follows a Gibbs
distribution.

1 1
P(w) = —-exp(-U (@) = —-exp(- DV, (»))
Z Z ceC
= where Z = » exp(-U (w)) is a normalization constan

m This theorem provides us an
easy way of defining MRF models via
cligue potentials.
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Definition — Clique

m A subset C c S Is called a clique if every pair of
pixels in this subset are neighbors.

m A cligue containing n pixels is called n order
clique, denoted by C_ .

m The set of cligues in an image Is denoted by

r c=c,Uc,U..uc,

‘_[. o —o’

singleton doubleton
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Definition — Clique Potential

m For each clique c in the image, we can assign a
value V. (@w)which is called clique potential of c,
where @ Is the configuration of the labeling field

m The sum of potentials of all cligues gives us the
energyu (o) of the configuration®

U(w) = ZVC((D) = Zvcl (o) + Z:VC2 (0, ®;) +...

ceC ieC; (1,))eC,
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Segmentation of grayscale images:
A simple MRF model

m Construct a segmentation model where regions are
formed by spatial clusters of pixels with similar
intensity:

Model i
—p |(MRF segmentation model
parameters .

find MAP estimate a'}
q

segmentation

Q

Input image
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MRF segmentation model

m Pixel labels (or classes) are represented by
Gaussian distributions:

1
P(fslws) — \/EO_ exp(_ 202

m Clique potentials:

0 Singleton: proportional to the likelinood of
features given w: log(P(f | w)).

0 Doubleton: favours similar labels at neighbouring

pixels — smoothness prior { @ 6@ % }

-p i o=0,
+p It o #o,

Cliques

vcz(i,j)=ﬂ5<wi,w,-)={

As fincreases, regions become more homogenous
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classes:

Model parameters

= Doubleton potential 3

1 less dependent on the input =
= can be fixed a priori

m Number of labels (|A])

0 Problem dependent=>»
= usually given by the user or
= inferred from some higher level knowledge

m Each label AeA is represented by a Gaussian
distribution N(,,c;):
[0 estimated from the input image

15
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Model parameters

m The class statistics (mean and variance)
can be estimated via the empirical mean
and variance:

1
A SL,"—:.‘_'?}|L
1
2 2
oy =—— ) (fs— )
| Sx ] 2.

.EES;.|L
0 where S, denotes the set of pixels in the
training set of class A

[0 a training set consists in a representative
region selected by the user

classes:

16
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Energy function

m Now we can define the energy function of
our I\/IRF model.

U(w)=> |og(Faws)+ ””s) j+2,8§(

s\ Ga)s

P(o| f)—eXP( U(@))—exp( 2 V(@)

ceC

= Hence . wap =argmax P(w| f) =argminU (o)

wel) we()



sl EikeVARandem Fields in Image Segmentation 18

Optimization

m Problem reduced to the
minimization of a non-convex
energy function

0 Many local minima '.

-

m Gradient descent? . | .
l'./\ \m't

0 Works only if we have a good
Initial segmentation \ /

m Simulated Annealing .
0 Always works (at least in theory)
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ICM (~Gradient descent) [Besag86]}

Start at a “good’ initial configuration wY and set
k=20

i
L

e
e

For each configuration which differs at most in one
element from the current configuration w® (they

are denoted by .-'I"u';_;# ), compute the energy Uin)
|._|{';"_-|I = .-'Illﬂl:dh_l}. .|!I

P
k"

Iy
Ll

From the configurations in N i, select the one
which has a minimal energy:

T =arg min U(y). (6)
neN_k

M
L

GOTo S5tep & with k= E 4 1 until convergence s
obtained (for example, the energy change is less
than a certain threshold).

Fa
.,
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Simulated Annealing

S,

.y

2

3

®

Set k= 0 and initialize « randomiy. Choose 3
sufficiently high initial temperature T = Ty.

Construct a trial perturbation n from the current
configuration w such that n differs only in one el-
ament rom w.

{(Metropolis criteria) Compute AU = Uln) —
U{w) and accept n IT AU < 0 else accept with
probability exp{—ALU/T) (analogy with thermody-
namics):

n FAU <0,
w=+ 1 IFTALU =0 and & < exp(—-ALU/T), (4)
w  otherwise

where £ is a uniform random number in [0,1).

Decrease the temperature. 1T = Ti4q and goto
Step @) with k= k4 1 until the system Is frozen.

20
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Temperature Schedule

A
1 \\
=35 I|
== |
3 I' ll'f-\ml\—ql
V4

. r
e 2 0

(8)
with

M= maxU{w) —min 7w 9
> Maxti(w) — min U(w) (2)

21
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Temperature Schedule

Laogarithmic sched- Exponential sched-
ule {4/ In(k)). ule (0.95%.4).

m [nitial temperature: set it to a relatively low value (~4)=>
faster execution
0 must be high enough to allow random jumps at the beginning!
m Schedule: Te1 =¢c- Ty, k=0,1,2,...

m Stopping criteria:
00 Fixed number of iterations
0 Energy change is less than a threshols

22
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Demo

m Download from:
http://www.inf.u-szeged.hu/~kato/software/

I MRF Image Segrnentatiunk[iemu SRevision: 1.7 §

Gibbs zampler «

Wariance
578.59
£11.65
B14.28
595,57

|G I
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Summary

m Design your model carefully

O Optimization Is just a tool, do not expect a
good segmentation from a wrong model

m What about other than graylevel features
1Extension to color Is relatively straightforward
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What color features?

| RGB histogram

25
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Extract Color Feature

= We adopt the CIE-L*u*v* color space because it
IS perceptually uniform.

1 Color difference can be measured by Euclidean
distance of two color vectors.

m \We convert each pixel from RGB space to CIE-
L*u*v* space =»
0 We have 3 color feature images

.
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Color MRF segmentation model

m Pixel labels (or classes) are represented by
three-variate Gaussian distributions:

1 1,- . 4,7 =
P(f @) = ——exp(— (- 0,)2.(f,-,)")
J@r)' |z, |

m Clique potentials:

0 Singleton: proportional to the likelinood of
features given w: log(P(f | w)).

0 Doubleton: favours similar labels at neighbouring

pixels — smoothness prior { @ 6@ % }

—p |If W, = o,
+p It o #o,

Cliques

ch(i1j):ﬂ§(a)i’a)j):{

As fincreases, regions become more homogenous
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Summary

m Design your model carefully

O Optimization Is just a tool, do not expect a good
segmentation from a wrong model

= What about other than graylevel features
1Extension to color Is relatively straightforward

m Can we segment images without user
Interaction?

OYes, but you need to estimate model
parameters automatically (EM algorithm)



sl il eV EioVARandem Fields in Image Segmentation 29

Incomplete data problem

m Supervised parameter estimation

Jwe are given a labelled data set to learn from
= €.g. somebody manually assigned labels to pixels

m How to proceed without labelled data?
O Learning from incomplete data
0 Standard solution Is an iterative procedure

called Expectation-Maximization

= Assigns labels and estimates parameters
simultaneously

= Chicken-Egg problem



g
EM principles : The two steps

E Step : For each pixel,
use parameters to compute probability distribution

-

N

~

Parameters :
P(pixel/label)P(label)

)

A

\’

-

-

Weighted labeling :
P(label/pixel)

~

/

M Step : Update the estimates of parameters
based on weighted (or "soft”) labeling

30
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The basic idea of EM

m Each of the E and M steps Is
straightforward assuming the other is
solved

O Knowing the label of each pixel, we can
estimate the parameters

= Similar to supervised learning (hard vs. soft
labeling)
0 Knowing the parameters of the distributions,
we can assign a label to each pixel

= by Maximum Likelihood — i.e. using the singleton
energies only without pairwise interactions
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Parameter estimation via EM

m Basically, we will fit a mixture of Gaussian
to the image histogram

O0We know the number of labels |A| = number of
mixture components

m At each pixel, the complete data includes
0 The observed feature f,

COHidden pixel labels |, (a vector of size |A])

m specifies the contribution of the pixel feature to
each of the labels — i.e. a soft labeling
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Parameter estimation via EM

m E step: recompute |/ at each pixel s:

P(t, | 4)P(4)
> P(f | 1)P(4)

AeA

IL=P(A|f,) =

m M step: update Gaussian parameters for

P ﬂ, _ S€S ’ _— Se$ .
WS TS e
seS
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Summary

m Design your model carefully

O Optimization Is just a tool, do not expect a good
segmentation from a wrong model

= What about other than graylevel features
0 Extension to color is relatively

m Can we segment images without user interaction?

0 Yes, but you need to estimate model parameters
automatically (EM algorithm)

m What if we do not know |A|?

O Fully automatic segmentation requires
= Modeling of the parameters AND

= a more sophisticated sampling algorithm (Reversible jump
MCMC)
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JSEG (Y. Deng, B.S.Manjunath: PAMI'01):

MRF+RIJMCMC vs. JSEG

1.

730 X 500

(Ui 2T) DINDINCY

color quantization: colors are
quantized to several representing
classes that can be used to
differentiate regions in the image.
spatial segmentation: A region
growing method is then used to
segment the image.

(ulw g'T) ©3sr

35
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Benchmark results using the

Berkeley Segmentation Dataset

B L i =y
o ¥ Sl
] Ly S
h |
& ,
. 14
i
i
I- 3

JSEG RIMCMC

36
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Summary

m Design your model carefully

0 Optimization is just a tool, do not expect a good segmentation from
a wrong model

m \What about other than graylevel features
[0 Extension to color is relatively

m Can we segment images without user interaction?
[0 Yes, but you need to estimate model parameters automatically (EM
algorithm)
= What if we do not know |A|?

00 Fully automatic segmentation requires
= Modeling of the parameters AND
= a more sophisticated sampling algorithm (Reversible jump MCMC)
= Can we segment more complex images?
0 Yes but you need a more complex MRF model
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Objectives

E Com
0Co
O0Co

nine different segmentation cues:
or & Texture [ICPR2002,ICIP2003]

or & Motion [ACCV2006,ICIP2007]

] ?

O HOW

humans do it?

1 Multiple cues are perceived simultaneously and
then they are integrated by the human visual
system [Kersten et al. An."Rev. Psych. 2004]

1 Therefore different image features has to be
handled in a parallel fashion.

m We attempt to develop such a model in a
Markovian framework
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Multi-Layer MRF Model:
Neighborhood & Interactions

OCOO0OOO00C0O
j OCOOOGOO0O0
B ®IS modeled as a MRF ST Y Y LY Yers
O Layered structure O00O0ADOO Color
00 “Soft” interaction OoCOoCQUOOO
between features olote i Telelale
m = P(w|f)follows a OOONPOOOQO
Gibbs distribution O0O00C#HO000

0 Clique potentials define < © QO IO OO O A 1 ag
theqlocal?l interaction ooooOLoo O

strength ole OO0
s MAP < Energy OOOO b OOQOO
minimization (U(w .
(U(@)) OOOO@®OOOC Texture

Hammersley - Clifford Theorem: COO0CO00

39

Intra—layer Cliques

OO@C@D

Inter—layer Cliques

Model < Definition of cligue potentials

eXp('Z Ve (0))
Z

P(Cf)) _ exp(_zu(w)) _
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Texture Layer: MRF model

m \We extract two type of texture features

0 Gabor feature is good at discriminating strong-
ordered textures

0 MRSAR feature is good at discriminating weak-
ordered (or random) textures

0 The number of texture feature images depends on the
size of the image and other parameters.
= Most of these doesn’t contain useful information =

[0 Select feature images with high discriminating power.
» MRF model is similar to the color layer model.

40
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Examples of Texture Features

MRSAR features:

41
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Combined Layer: Labels

- O000eO000
= A label on the combined COCOdO000
layer consists of a pair of ©OQO#HLPOO0
color and texture/motion ~-obAI00

labels such that S oTeYe ¢/ clelelele
where 7 e Aand 7y, e &' OLOWOOOO

m The number of possible  ©OCOGI OO O egnined
classesis | x |"

00 0000
m The combined layer A oA gl e (A
selects the most likely OCOOBOOD O Mation

ones. COO0O000O00

42

Intra—layer Cliques

OO@%

Inter—layer Cliques
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Combined Layer: Singleton potential

m Controls the number of classes:
V,(7,) = R(AON, )+ P(L))

CIN, Is the percentage of labels belonging to class,
11 L is the number of classes present on the combined
layer.

m Unlikely classes have a few pixels = they will
be penalized and removed to get a lower energy
m P(L) Is alog-Gaussian term:
0 Mean value is a guess about the number of classes,
00 Variance is the confidence.
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Combined Layer: Doubleton potential

m Preferences are set in this order:
1. Similar color and motion/texture labels
2. Different color and motion/texture labels

3. Similar color (resp. motion/texture) and different
motion/texture (resp. color) labels
= These are contours visible only at one feature layer.

—a it pi=n,n'=n
0 it n,=n.,n =1,

+a 0 g =i =n

\ or 17, =1;,15 #1,

O(175:77,) =1
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Inter-layer cligue potential

. . i i : Inter—laver Ch
m Five pair-wise interactions between R

a feature and combined layer

m Potential is proportional to the
difference of the singleton
potentials at the corresponding
feature layer.

O Prefers o, and 7, having the same
label, since they represent the
labeling of the same pixel

[ Prefers @, and 7, having the same
label, since we expect the combined
and feature layers to be homogenous

45
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Color Textured Segmentation

color

texture

color

46






gigevRandem Fields in Image Segmentation

Color & Motion Segmentation
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